The importance of proper crystal-chemical and geometrical reasoning demonstrated using layered single and double hydroxides
نویسنده
چکیده
Atomistic modelling techniques and Rietveld refinement of X-ray powder diffraction data are widely used but often result in crystal structures that are not realistic, presumably because the authors neglect to check the crystal-chemical plausibility of their structure. The purpose of this paper is to reinforce the importance and utility of proper crystal-chemical and geometrical reasoning in structural studies. It is achieved by using such reasoning to generate new yet fundamental information about layered double hydroxides (LDH), a large, much-studied family of compounds. LDH phases are derived from layered single hydroxides by the substitution of a fraction (x) of the divalent cations by trivalent. Equations are derived that enable calculation of x from the a parameter of the unit cell and vice versa, which can be expected to be of widespread utility as a sanity test for extant and future structure determinations and computer simulation studies. The phase at x = 0 is shown to be an α form of divalent metal hydroxide rather than the β polymorph. Crystal-chemically sensible model structures are provided for β-Zn(OH)2 and Ni- and Mg-based carbonate LDH phases that have any trivalent cation and any value of x, including x = 0 [i.e. for α-M(OH)2·mH2O phases].
منابع مشابه
Application of Pd-Substituted Ni-Al Layered Double Hydroxides for the Hydrogen Evolution Reaction
Clean production of hydrogen from electrochemical water splitting has been known as a green method of fuel production. In this work, electrocatalytic hydrogen evolution reaction (HER) was investigated at new prepared layered double hydroxides (LDH) in acidic solution. NiAl/carbon black (CB) LDH was monitored using x-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scannin...
متن کاملAdsorptive desulfurization of oil derivatives using nanostructured Mg-Al layered double hydroxides: Experimental design and modeling
This study focuses on the application of nanostructured Mg-Al layered double hydroxide as a promising adsorbent in desulfurization of dibenzothiophene, an aromatic sulfur bearing compound from gasoil model. The Mg-Al LDH was synthesized by a co-precipitation method and characterized by FT-IR, XRD, EDX and SEM. The XRD and FT-IR approved the layered structure and crystalline form of the adsorben...
متن کاملBiological Application of Layered Double Hydroxides in Drug Delivery Systems
This review focuses on the extensive study of different layered double hydroxides (LDHs)nanostructures and also their biological and physicochemical (in vitro) properties to encapsulateand deliver drugs with a recognized pharmacokinetic profile in a sustained/modified manner forbetter remedial efficacy contrasted to the corresponding conventional treatments using different<br ...
متن کاملThe ability of layered double hydroxides for nitrate absorption and desorption in crop and fallow rotation
BACKGROUND AND OBJECTIVES: This study aims down to evaluate the ability of chloride magnesium- aluminium- layered double hydroxides (4:1) for nitrate adsorption from the soil solution in successive cropping periods. METHODS: The study was conductedunder long-term cropping periods, including first crop): bell pepper; second crop: mentheae; third crop: cher...
متن کاملAdsorptive desulfurization of oil derivatives using nanostructured Mg-Al layered double hydroxides: Experimental design and modeling
This study focuses on the application of nanostructured Mg-Al layered double hydroxide as a promising adsorbent in desulfurization of dibenzothiophene, an aromatic sulfur bearing compound from gasoil model. The Mg-Al LDH was synthesized by a co-precipitation method and characterized by FT-IR, XRD, EDX and SEM. The XRD and FT-IR approved the layered structure and crystalline form of the adsorben...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 69 شماره
صفحات -
تاریخ انتشار 2013